Population coding in cortical area MST.
نویسندگان
چکیده
Disparity steps applied to large patterns elicit vergence eye movements at ultrashort latencies. Disparity tuning curves, describing the dependence of the amplitude of the initial vergence responses on the amplitude of the disparity steps, resemble the derivative of a gaussian and indicate that appropriate servo-like behavior occurs only with small disparity steps (<1 degree). Lesion data from monkeys suggest that these vergence responses are mediated, at least in part, by neurons in the medial superior temporal area of the cerebral cortex, and we here review a recent study of the associated single unit activity in that area. Few medial superior temporal neurons have disparity tuning curves whose shapes resemble the tuning curve for vergence. Yet, when the disparity tuning curves for all of the disparity-sensitive cells recorded from a given monkey are summed together, they match the tuning curves for the vergence responses of that monkey very closely, even reproducing that animal's idiosyncracies. When all of the spike trains elicited by a given disparity step are summed together to give an average discharge profile for the whole population of recorded cells, many are noisy, but others that are less so match the temporal profile of the motor response, vergence velocity, quite well. We conclude that the discharges of the disparity-sensitive cells in the medial superior temporal area each represent only a very limited aspect of the sensory stimulus (and/or associated motor response?), but when pooled together, they provide a complete description of the vergence velocity motor response: population coding.
منابع مشابه
Directional asymmetry of neurons in cortical areas MT and MST projecting to the NOT-DTN in macaques.
The cortical projection to the subcortical pathway underlying the optokinetic reflex was studied using antidromic electrical stimulation in the midbrain structures nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) while simultaneously recording from cortical neurons in the superior temporal sulcus (STS) of macaque monkeys. Projection neurons were fou...
متن کاملPrivate lines of cortical visual information to the nucleus of the optic tract and dorsolateral pontine nucleus.
The subcortical nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN), along with the dorsolateral pontine nucleus (DLPN), has been shown to play a pivotal role in controlling slow eye movements. Both nuclei are known to receive cortical input from striate and extrastriate cortex. To determine to what degree this cortical input arises from the same areas...
متن کاملMotion perception without explicit activity in areas MT and MST.
It is widely accepted that middle temporal (MT) and middle superior temporal (MST) cortical areas in the brain of rhesus monkeys are essential for processing visual motion. We asked whether this assumption holds true if the moving stimulus consists of a second-order motion stimulus. In addition, we asked whether neurons in area MT and MST code for moving sound sources. To answer these questions...
متن کاملAdaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow.
The extraction of optic flow cues is fundamental for successful locomotion. During forward motion, the focus of expansion (FoE), in conjunction with knowledge of eye position, indicates the direction in which the individual is heading. Therefore, it is expected that cortical brain regions that are involved in the estimation of heading will be sensitive to this feature. To characterize cortical ...
متن کاملThe constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery.
Echoplanar functional magnetic resonance imaging was used to monitor activation changes of brain areas while subjects viewed apparent motion stimuli and while they were engaged in motion imagery. Human cortical areas MT (V5) and MST were the first areas of the 'dorsal' processing stream which responded with a clear increase in signal intensity to apparent motion stimuli as compared with flicker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 956 شماره
صفحات -
تاریخ انتشار 2002